Alternatives after Patients are
past Standard of Care and

have run out of Clinical Trials:
p1RCC Hackathon Report

RareKidneyCancer.org

W.G. Paseman
bill@RareKidneyCancer.org

20240415



mailto:bill@RareKidneyCancer.org

Agenda

* *Medical Research Issues from the Rare Disease Patient POV
* Reproducibility, Reporting, Data Access, Novelty, Urgency,
Inclusion
 Hackathons — Patient led research modeled after Kaggle
* One Patient, Many Competing Teams, Unrestricted Rich Data Set
* Bill Paseman Papillary Kidney Cancer Hackathon
* Process, Report and Conclusions
* Summary

Rarekidneycancer.org | 20240415



Patient Journey

* Standard of Care
* Diagnosis Condition
* Look up in a Big Book
* Follow Instructions
* |f doctor don't follow the book, doctor can lose their license
* Can’t “Pour purple dust and wave feathers over a broken bone’
* Clinical Trials
* If it passes the IRB, and is double blind, doctor
* can “Pour purple dust and wave feathers over a broken bone”
* 7?7 -Wait; Hope; Spend a lot of time on the Internet

L)
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Issues:
Reproducibility/Reporting/Data

* Now
* Poor Reproducibility (Bayer) - 25% replication
* Poor Reporting (alltrials.net)
* Current problem: e.g. 20240123 Dana Farber retracts 6 studies
* Limited Data Access — “Data Silos”
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Issues: Novelty/Agility

Cancer Research is done with big teams

Field % of Papers . .
“‘,’ith <4 f\uthors This surprised me because...

e NY Times: Can Science be too Big?
o Big Teams confirm findings
o Small Teams generate new ideas
o Disruption is inversely proportional to author count

e Small teams are more agile
Genetics 21% o Small enables closely space milestones (speed)

o Closely spaced milestones keep you on track
Cancer 12%
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Issues: Urgency

Researchers and Patients view time differently

® Different Units of Measure
® Researchers time measurement: yearly conferences and tenure tracks
® Patients time measurement: PFS, OS, months between treatments; months until death

® Time pressure affects Motivation (for all you patients out there)
® Researchers are motivated to win
® (Some) Patients are desperate to win

* 49ers Quarterback Steve Young: Everyone wants to win. Steve was desperate to win

® (Question to patients in the audience: Can you do something if your life depended on it?

* If “yes” and you are not doing it now, it is a motivation issue, not a training issue

® Hippocrates
* It's far more important to know what person the disease has than what disease the person has

* If you are not your own doctor, you are a fool.
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Issues: Inclusion

In a Cancer Researchers’ social network...

In this case, interpersonal team interactions form an
extensive social network

Principal investigator
Research Coordinator
Pathologist

Physician

RED = Research Team

Gerber DE et al. J Oncol Practice 2016:12:1020-1028. BLUE = Clinic Team
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Issues: Inclusion

... patients don’t exist

In this case, interpersonal team interactions form an
extensive social network

RED = Research Team

Gerber DE et al. J Oncol Practice 2016:12:1020-1028. BLUE = Clinic Team

* Peanuts

Principal investigator
Research Coordinator
Pathologist

Physician

PATIENT!!

Patient Advocate
(e.g. Smart
Patients)
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Issues: Inclusion
“A “Seat at the Table™ when its not your table

* Proposal: Renal Cancer incidence in Native Americans
* My Comments
* Record if its a rare cancer
* “Rate of Renal Cell Carcinoma Subtypes in Different Races”
* Record Occupation
* My “lived Experience”:
* Lots of Native Americans in Texas, Oklahoma and the Dakotas
* Lots of Petrochem jobs in Texas, Oklahoma and the Dakotas
* Lots of Kidney Cancer in Texas, Oklahoma and the Dakotas
* All points rejected, none recorded.
* T-test comment not acted on.
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https://pubmed.ncbi.nlm.nih.gov/21385477/

Advice given to a 14 year old:
If you don't like other kid'’s
parties
Throw your own
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Kaggle

The competition host prepares the data and a description of the problem,;
the host may choose whether it's going to be rewarded with money or be
unpaid. Participants experiment with different techniques and compete
against each other to produce the best models. Work is shared publicly
through Kaggle Kernels to achieve a better benchmark and to inspire new
ideas.

For most competitions, submissions are scored immediately (based on
their predictive accuracy relative to a hidden solution file) and summarized
on a live leaderboard.

Tianqgi Chen from the University of Washington also used Kaggle to show
the power of XGBoost, which has since replaced Random Forest as one of

the main methods used to win Kaggle competitigss://en.wikipedia.org/wiki/
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https://en.wikipedia.org/wiki/Random_forest

Hackathons

Baseline Approach: Hackathon Approach

Big teams doing the same Small teams doing
things slowly and often different things quickly
secretly without any patient and openly with patient
involvement. involvement.

Goal: Improve Health

Goal: Improve knowledge,
FDA approval

* If you don't like someone else’s party, throw your own
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p1RCC Hackathon Process

*  Organizer: Open Participation
* Open investigation to Beginners, not just Experts.
*  Patient: Opens their own Deep Research Data; TCGA
* DNA, EHR, etc. is given to everyone
* RNA-seq is the holdout set
*  Researcher: Common Published Deliverable(s)
* “Genes of interest” 1s the primary common deliverable which enables objective comparison.
*  Everyone: Objective Evaluation
* Everyone can participate, but scoring mechanisms tell us who to listen to.
* These scoring mechanism are -objective-, they don’t depend on interpretation by particular
persons,
* and -automated-, which lets computer programs to help scale up the process.
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P1RCC Hackathon Process

Competition (Gamification)

4
3 P

®
®

® 006

Level 1 \ Level 2 1 Patient
(Diagnosis) | (Treatment)

LeaderBoard ® Ensemble Reasoning
(Scores) * “The best way to have a

good idea is to have lots of
ideas.” - Linus Pauling
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on Teams

i} :
-',.:,Er

2018 p1RCC Hackat

80 People (some Remote) formed 17 Teams (50 pictured)
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Clinical vs. Research Data

* Genetics- brother has thyroid cancer

* Genomics - TCGA Thyroid cancer
clusters close to p1RCC

* Metabolomics - High Uric Acid -
“Thyroid hormones influence kidney
function and thereby might alter
serum urate levels, a major risk

Which 'omic data is most predicti

S|3PO0W 3AI2IPBIC JO JaguiniN

so | I A factor for gouty arthritis.”

TTE g = * Co-morbidities - Bradycardia (Slow
§ %‘\ -\f Heart Rate): “hypothyroidism results
:;' P—

in an insufficient amount of thyroid

hormone which leads to a slower
James Watson: targeting metabolism is a more heart rate

promising avenue in current cancer research than Dental Records
gene-centered approaches. 20160515 NYT

Rarekidneycancer.org | 20240415




2018 p1RCC DNA Hackathon

Process 10 Up Weighted

Classifications

» 119 Recommended Genes ( Genes)
hq_—J |cancer-genome-workbench
"0 -Savealnudleotideneiwork * BARD1

RecausalNucleotideNetworks
g_m AKR1B10  BASP1P1 CLEC2B CYP4F1l LINCOO0621 PLEKHO1 PLEKHOZ ... « PDE4DP
=2 'BioMarkers.ai DMRT2 FHL1 KNG1  PTGER3 UMOD
O pamTheRiver AC1394253 ACSM2A  ANO9 | AQP12B  GRIN3B HEXB HIVEP3 ... « SETD2
X GEViz NRF2-ARE
(Q HelloKidney ITGAM TNFSF4 * NF2
@ KidneyBean TUBBS
= studenteg AMPD2 DPP6 FLG2  FTMT  ST6GALNACS * BAP1
I~ trimer AGBL4 ARIDAL CUL-2 HPSE2  LAMC-1 SK3 TRABD2B ... . KDM6A
™ |DeeperDrugs 'BARD1 APOB  CDK9  TTRAP .« PBRM1
“=— GNOME BARD1  PDE4DIP AHNAK ANAPC1 BCLAF1 DNAJ27  PABPC1 ...
O |Hellokidney2 PDEADIP FOLHL GDNF  MTHFR PFKP PSMA . MTOR
Q.
] _ _ _ MTOR PIK3CA ... "
'Q_HSIEH SETD2 NF2 BAP1  KDMSA PBRM1 MTSR  PIK3CA .. PIK3CA
= ExpressForce SETD2 NF2 BAP1  KDM6A PBRM1 FGFR1  ARIDIA ... - FGFR1
3 HIF1AlIsNotAnOncogene FGFR1 CDK4
C
L
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SCIENTIFIC REPQRTS

Linking Binary Gene Relationships

“to Drivers of Renal Cell Carcinoma

Reveals Convergent Function in
s Alternate Tumor Progression Paths

Published online: 27 Feb 2019 : - .
ublished omiine eoruary . William L. Poehlman?, James J. Hsieh () & F. Alex Feltus®

. Renal cell carcinoma (RCC) subtypes are characterized by distinct molecular profiles. Using RNA

: expression profiles from 1,009 RCC samples, we constructed a condition-annotated gene coexpression
. network (GCN). The RCC GCN contains binary gene coexpression relationships (edges) specific to

. conditions including RCC subtype and tumor stage. As an application of this resource, we discovered

. RCCGCN edges and modules that were associated with genetic lesions in known RCC driver genes,

. including VHL, a common initiating clear cell RCC (ccRCC) genetic lesion, and PBRM1 and BAP1 which
are early genetic lesions in the Braided Cancer River Model (BCRM). Since ccRCC tumors with PBRM1

© mutations respond to targeted therapy differently than tumors with BAP1 mutations, we focused on

. ccRCC-specific edges associated with tumors that exhibit alternate mutation profiles: VHL-PBRM1 or
 VHL-BAP1. We found specific blends molecular functions associated with these two mutation paths.

. Despite these mutation-associated edges having unique genes, they were enriched for the same

. immunological functions suggesting a convergent functional role for alternate gene sets consistent with
. the BCRM. The condition annotated RCC GCN described herein is a novel data mining resource for the

: assignment of polygenic biomarkers and their relationships to RCC tumors with specific molecular and
. mutational profiles.
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Parents,Siblings,Cohort Genetics

Cyan
KIRC Black
KICH Red
Coral
Magenta
CHOL Blue
Orange
Lime
Others Light Gray

2018 Quantuminsights.io DQC
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2020 p1RCC RNA Hackathon

Process

* Three Teams

— Clemson
- GeneXplain
6 Normalized % g O = Quantuminsights.io
p1RCC Patients § 2Q
RNA Genes o= Bill Data Clusters
Close to thyroid
! cancer

GeneXplain
\

Therapeutics
Cabozantinib
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Cellular State Transformations Using Deep Learning
for Precision Medicine Applications

Graphical Abstract

Patient-Public
Data Integration

Patient Tumor
Biopsy

RNA Sequencing

TCGAE

EE>

ﬂ‘ﬂi

Transcriptome State
Perturbation Generator
(TSPG)

Transcriptomic Shift
Predictions

Patient Specific
Biomarkers

Deep Learning Neural Network

Highlights
e We present the Transcriptome State Perturbation Generator

20240415
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In Brief

Cells express genes in unique
combinations that enable distinct
functions. Using machine learning, we
present an algorithm that takes a source
gene expression snapshot and learns
how to change it to mimic a target
snapshot. We applied the Transcriptome
State Perturbation Generator algorithm to
learn which genes have changed in a
single patient’s tumor relative to a normal
tissue sample. By knowing which gene
expression changes are required to leave
a normal state in a single person, it is
possible to design therapeutic strategies
tailored for that patient.



Merging 2018 and 2020 Results

Gene BP-Tumor -2020

Aontan -

St.l,!..v..t\..v . IiLGZ 0.569807 . 2018 pIRCC
BioMarkers.ai ~HL1 -0.370446 ‘ ~ 119 recommended Genes
HeiloKidneyZ TAS2R19 -0.363179 <= « 2020 p1RCC
ExpressForce TERT -0.358329 - 6 Normalized
HelloKidney?2 TYMS -0.287382 - giﬁgf patients RNA
trimericOGs HPSE2 0567236 * BioMarkers.ai sorted to
BioMarkers.ai  PTGER3 0.59603 either end of the chart.
BioMarkers.ai DMRT2 0.621588 - Perhaps diagnostic
BioMarkers.ai UMOD 0.657959 _ Likely not therapeutic
BioMarkers.ai KNG1 0.668831
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Leaderboard Openly

Team - 2018 Gene BP-Tumor -2020 Approach

studentec FLG2 -0.569807 https://github.com/S VAI/ studentec
BioMarkers.ai FHL1 -0.370446 https://github.com/SVAI/Biomarkers.Al
HelloKidney?2 TAS2R19 -0.363179 https://github.com/SVAI/HelloKidney2
ExpressForce TERT -0.358329 https://github.com/S VAI/ExpressForce
HelloKidney?2 TYMS -0.287382 https://github.com/SVAI/HelloKidney2
trimericOGs HPSE2 0.567236 https://github.com/S VAl/trimericOGs
BioMarkers.ai PTGER3 0.59603 https://github.com/SVAI/Biomarkers.Al
BioMarkers.ai DMRT2 0.621588 https://github.com/SVAI/Biomarkers.Al
BioMarkers.ai UMOD 0.657959 https://github.com/SVAI/Biomarkers.Al
BioMarkers.ai KNGI1 0.668831 https://github.com/SVAI/Biomarkers.Al

Rarekidneycancer.org | 20240415



Therapeutic Options
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TBD: Wetlab

* Travera

* 20 wells on a tray

* Each with fresh tumor

* And a different Treatment in each well
* Rare Cancer Research Foundation
* https://www.arctoris.com/

* Cell Line Labs
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Biomarkers.ai - 2018

* KNGH1 uses alternative splicing to generate two different proteins: High MWt kininogen (HMWK) and MWt
kininogen (LMWK). HMWK is essential for blood coagulation and assembly of the kallikrein-kinin system.
This might explain my medical history.

- Got warfarin/coumadin for diagnosis of deep vein thrombosis

- DVT Symptoms returned. Went back and found: 7 cm mass left kidney, cerebral meningioma and spots in
lung.

* Uromodulin (encoded by UMOD; also known as Tamm-Horsfall protein) is the most abundant protein in
mammalian urine under normal physiological conditions.

- UMOD can distinguish Normal Tissue from p1RCC with 100% accuracy.
- Is UMOD also a good urine-based biomarker for p1RCC?

* FHL1 was an indicator for petrochemical exposure. For a time | worked in chemical refineries and on oil
rigs. This might be the source of my somatic mutation

- Exposure to benzopyrene and several other agents enhances FHL1 expression
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Why did BlOada.com do better?

Saed Sayad came to the hackathon with a set of favorite tools already in place
(BlOada.com) which saved analysis time.

He created a normalized cohort by looking up RNA data on NCBI GEO (Gene Expression)
data) using my DNA data as a key. RNA provided a stronger signal than my DNA data,
and ultimately matched my RNA-seq data when it became available.

This stronger signal allowed him to use a simpler data analysis technique (LDA- Linear
Discriminant analysis) to get clean data separation and so make better predictions.

His team was small and focused. Note that a 2019 article entitled “

Can Big Science Be Too Big?” posited that papers with few authors tended to report more
breakthrough research and papers with many authors tended to confirm existing findings.
His outsized results are supported by portfolio theory. Dr. Sayad took on a lot of risk
(Using one tool, BlOada.com. Abandoning DNA data, using GEO instead. Using one
method, LDA. Using a small team, generating fewer new ideas) and so was likely to either
get a big win, or go bust.

In that sense, a hackathon can be viewed as a portfolio of real options, and a hackathon

“portfolio” has similar risk/return math to that used in financial portfolio construction.
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Can Science be too Big?

Team member Count vs Avg TSPG Score

12 &idneyBean

10 1 d)eeperDrugs

8 4 dizheng gamTheRiver
<
>
o
O
o
€ 6- grimericOGs
Q
=

e-XpressfForce
4 SikAnie derghidiF 2\ [SNotAnOncogene
SioMarkers.ai
2 QuantuminsightsgsOiEomics dlelloKidney2 gtudentec
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“Patient Centered” Summary

* Patients view themselves as having a “rare disease” that is not served well by cohort analysis. We
hope to use sibling and parent genetic data as a "control" in future events.

* Patients themselves host and maintain control of the event and are responsible for providing their own
data.

* Data Control allows patients to create a current, longitudinal record over time for each subsequent
hackathon as their disease develops.

“Game Elements”

* Hackathon participants are divided up into teams.

* The Game has “levels” which include diagnosis and therapeutic recommendations.

* Team’s results are “scored” which helps the Patient prioritize future research approaches.

* Scores can be posted on a LeaderBoard, which allows sharing of Research Approaches.

“Treat Research Teams as formal computational objects”

* Apply an “Ensemble Learning” technique called "bucket of models".

* For each model m in the bucket:

. Do c times: (where 'c' is some constant)

. Randomly divide the training dataset into two datasets: A, and B.

. Train m with A; Test m with B

* Select the model that obtains the highest average score
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Summary

There are things to try after Clinical Trials Run out
Contact me if you’re interested in participating in future

hackathons, or if you want to get involved in improving the
process (LLMs)

* bill@rarekidneycancer.org

| describe improvements to the approach tomorrow

* 20240416_1750-1810 - Clinical Trials

* Using gamified tumor boards to accelerate cancer research
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Final Word

An obvious point needs to be made explicitly here. Though I
contributed data on the front end of the process and did a few
SQL table joins and sorts on the back end of the process, NONE
of the biology is my work. It is the work of the many volunteer

researchers who spent many hours exploring my data on my
behalf. Thank You.

“If you work on frequent cancers, do randomized trials! If you
work on rare cancers—find friends!”Olson, TA, Schneider, DT,
Brecht, IB, et al. Rare tumors: a different perspective on oncology. In:
Schneider, DT, Brecht, 1B, Olson, TA, Ferrari, A, eds. Rare Tumors in
Children and Adolescents. Berlin: Springer; 2012: 3—15.
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2018 p1RCC HackathonTeams

Team

Members

Summary

Alzheng

Alex Feltus, Ben Shealy, Colin Targonski,
Courtney Shearer, Eddie Weill, Ken
Matusow, Sufeng Niu, William Poehlman

Model TCGA-RCC tumors as a “time series” across stage

BioMarkers.ai

Peyman Mirtaheri, Saed Sayad, Usman
Qazi

Candidate p1RCC Biomarkers and environmental factors
influencing expression

cancer-genome-workbench

Betty, rene lopez, Rui, Sarah

Predict/classify a sample cancer type using genetic data
with: Unsupervised clustering, Dimensionality reduction,
Somatic SNPs, Data exploration

causalnucleotidenetwork

Arkarachai Fungtammasan, Naina
Thangaraj, Ola Zalcman, Steve Osazuwa

Variational Autoencoder and tSNE clustering

codeOmics

Daniel Hornburg, Milena Duerrbaum

Biomarkers to precision drugs

DamTheRiver

Andrew Wallace, Christian Clough, Felix
Frayman, Matt Callahan, Nandita
Damaraju, Pak Yu, Sebastian Nguyen,
William Wright

Identification of neo-antigens present within patient
P1RCC sequence data
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2018 p1RCC HackathonTeams

DeeperDrugs Andrew Mills, Biter Bilen, Jeff Lam, Lei Rigorous variant filtering and target pruning
Tian, Michael D'Amour, Monika
Maleszewska, Prasun Mishra, Tahera
Zabuawala, XIAOWEI ZHU

ExpressForce Amrit Virdee, Maricris Macabeo, Nikhil Netflix for Genes
Balaji, Sofia Medina Ruiz, Yuri Bendana

geviz Maytas Monsereenusorn, Natnicha Gene Expression Visualization
Vanitchanant, Navi Tansaraviput, Thanapat
Worasaran
GNOME In-Hee Lee, Sek Won Kong Pricritizing germline and somatic variants potentially

associated with p1RCC

HelloKidney Terje Norderhaug Autoimmune Clues to Kidney Cancer
HelloKidney2 Clinton Mielke, Robert Van Spyk Genetic Markers
HIF1AlsNotAnOncogene Eric Danziger, Joshua Bloomstein, A preliminary case study in EGFR

Stephanie Kinnunen, Wanlin Zheng
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2018 p1RCC HackathonTeams

KidneyBean Bea Nguy, Eric Kalosa-Kenyon, James (3), | Drug candidates towards personal medicine
Jay (3), Kallen Schwark, Kandy
Nachimuthu, Mabel Furutsuki, Maninder
Singh, Marcus Strauss, Rahim Hashim,
Sam Rapp, Wessam Sonbol

RecausalNucleotideNetworks Andrew Carroll, Jason Chin, Pi-Chuan How Effective Are lllumina Methods for BGI-SEQ?
Chang, Samantha Zarate 20180531 BLOG POST

studentec Brian Hanley, Rush Tehrani USING BIGQUERY FOR GENOMIC DATA ANALYSIS

trimericOGs Christine Kim, Lily Vittayarukskul, Phoebe | Classifying Tumor Stages based on Structural Variants in
So, Rohith Krishna, Samson Mataraso, Patient Data
senay yakut G
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Summary

* There are things to try after Clinical Trials Run out

* | describe improvements to this approach tomorrow
* 20240416_1750-1810 - Clinical Trials

* Using gamified tumor boards to accelerate cancer research
* Ad hoc tumor boards aided me in my Medical Decisions
* Evaluating an adjuvant clinical trial: Participate or not?
* Evaluating radiation therapy: Proton or Photon?
* Hackathons formalize and scale the tumor board process

* Focusing 17 Gamified Tumor Boards on one rare disease patient advanced Research
* Hackathons can be fully automated

* Replacing Patients and Tumor Board members with LLMs (Large Language Models).
* Contact me if you’re interested in participating in future
hackathons, or if you want to get involved in improving the
hackathon process (LLMs are the current focus)
* bill@rarekidneycancer.org
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